YES 1.147 H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/FiniteMap.hs
H-Termination of the given Haskell-Program with start terms could successfully be proven:



HASKELL
  ↳ BR

mainModule FiniteMap
  ((foldFM_LE :: (Char  ->  a  ->  b  ->  b ->  b  ->  Char  ->  FiniteMap Char a  ->  b) :: (Char  ->  a  ->  b  ->  b ->  b  ->  Char  ->  FiniteMap Char a  ->  b)

module FiniteMap where
  import qualified Maybe
import qualified Prelude

  data FiniteMap a b = EmptyFM  | Branch a b Int (FiniteMap a b) (FiniteMap a b


  instance (Eq a, Eq b) => Eq (FiniteMap a b) where 

  foldFM_LE :: Ord b => (b  ->  a  ->  c  ->  c ->  c  ->  b  ->  FiniteMap b a  ->  c
foldFM_LE k z fr EmptyFM z
foldFM_LE k z fr (Branch key elt _ fm_l fm_r
 | key <= fr = 
foldFM_LE k (k key elt (foldFM_LE k z fr fm_l)) fr fm_r
 | otherwise = 
foldFM_LE k z fr fm_l


module Maybe where
  import qualified FiniteMap
import qualified Prelude



Replaced joker patterns by fresh variables and removed binding patterns.

↳ HASKELL
  ↳ BR
HASKELL
      ↳ COR

mainModule FiniteMap
  ((foldFM_LE :: (Char  ->  a  ->  b  ->  b ->  b  ->  Char  ->  FiniteMap Char a  ->  b) :: (Char  ->  a  ->  b  ->  b ->  b  ->  Char  ->  FiniteMap Char a  ->  b)

module FiniteMap where
  import qualified Maybe
import qualified Prelude

  data FiniteMap a b = EmptyFM  | Branch a b Int (FiniteMap a b) (FiniteMap a b


  instance (Eq a, Eq b) => Eq (FiniteMap b a) where 

  foldFM_LE :: Ord a => (a  ->  c  ->  b  ->  b ->  b  ->  a  ->  FiniteMap a c  ->  b
foldFM_LE k z fr EmptyFM z
foldFM_LE k z fr (Branch key elt vw fm_l fm_r
 | key <= fr = 
foldFM_LE k (k key elt (foldFM_LE k z fr fm_l)) fr fm_r
 | otherwise = 
foldFM_LE k z fr fm_l


module Maybe where
  import qualified FiniteMap
import qualified Prelude



Cond Reductions:
The following Function with conditions
foldFM_LE k z fr EmptyFM = z
foldFM_LE k z fr (Branch key elt vw fm_l fm_r)
 | key <= fr
 = foldFM_LE k (k key elt (foldFM_LE k z fr fm_l)) fr fm_r
 | otherwise
 = foldFM_LE k z fr fm_l

is transformed to
foldFM_LE k z fr EmptyFM = foldFM_LE3 k z fr EmptyFM
foldFM_LE k z fr (Branch key elt vw fm_l fm_r) = foldFM_LE2 k z fr (Branch key elt vw fm_l fm_r)

foldFM_LE1 k z fr key elt vw fm_l fm_r True = foldFM_LE k (k key elt (foldFM_LE k z fr fm_l)) fr fm_r
foldFM_LE1 k z fr key elt vw fm_l fm_r False = foldFM_LE0 k z fr key elt vw fm_l fm_r otherwise

foldFM_LE0 k z fr key elt vw fm_l fm_r True = foldFM_LE k z fr fm_l

foldFM_LE2 k z fr (Branch key elt vw fm_l fm_r) = foldFM_LE1 k z fr key elt vw fm_l fm_r (key <= fr)

foldFM_LE3 k z fr EmptyFM = z
foldFM_LE3 wv ww wx wy = foldFM_LE2 wv ww wx wy

The following Function with conditions
undefined 
 | False
 = undefined

is transformed to
undefined  = undefined1

undefined0 True = undefined

undefined1  = undefined0 False



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
HASKELL
          ↳ Narrow

mainModule FiniteMap
  (foldFM_LE :: (Char  ->  a  ->  b  ->  b ->  b  ->  Char  ->  FiniteMap Char a  ->  b)

module FiniteMap where
  import qualified Maybe
import qualified Prelude

  data FiniteMap a b = EmptyFM  | Branch a b Int (FiniteMap a b) (FiniteMap a b


  instance (Eq a, Eq b) => Eq (FiniteMap a b) where 

  foldFM_LE :: Ord b => (b  ->  c  ->  a  ->  a ->  a  ->  b  ->  FiniteMap b c  ->  a
foldFM_LE k z fr EmptyFM foldFM_LE3 k z fr EmptyFM
foldFM_LE k z fr (Branch key elt vw fm_l fm_rfoldFM_LE2 k z fr (Branch key elt vw fm_l fm_r)

  
foldFM_LE0 k z fr key elt vw fm_l fm_r True foldFM_LE k z fr fm_l

  
foldFM_LE1 k z fr key elt vw fm_l fm_r True foldFM_LE k (k key elt (foldFM_LE k z fr fm_l)) fr fm_r
foldFM_LE1 k z fr key elt vw fm_l fm_r False foldFM_LE0 k z fr key elt vw fm_l fm_r otherwise

  
foldFM_LE2 k z fr (Branch key elt vw fm_l fm_rfoldFM_LE1 k z fr key elt vw fm_l fm_r (key <= fr)

  
foldFM_LE3 k z fr EmptyFM z
foldFM_LE3 wv ww wx wy foldFM_LE2 wv ww wx wy


module Maybe where
  import qualified FiniteMap
import qualified Prelude



Haskell To QDPs


↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
QDP
              ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

new_foldFM_LE10(wz34, wz36, wz37, wz38, wz39, wz40, wz41, h, ba) → new_foldFM_LE(wz34, Char(Succ(wz36)), wz40, h, ba)
new_foldFM_LE(wz3, Char(Succ(wz500)), Branch(Char(Zero), wz61, wz62, wz63, wz64), bb, bc) → new_foldFM_LE(wz3, Char(Succ(wz500)), wz64, bb, bc)
new_foldFM_LE1(wz34, wz36, wz37, wz38, wz39, wz40, wz41, Zero, Zero, h, ba) → new_foldFM_LE10(wz34, wz36, wz37, wz38, wz39, wz40, wz41, h, ba)
new_foldFM_LE(wz3, Char(Succ(wz500)), Branch(Char(Zero), wz61, wz62, wz63, wz64), bb, bc) → new_foldFM_LE(wz3, Char(Succ(wz500)), wz63, bb, bc)
new_foldFM_LE1(wz34, wz36, wz37, wz38, wz39, wz40, wz41, Zero, Succ(wz430), h, ba) → new_foldFM_LE(wz34, Char(Succ(wz36)), wz41, h, ba)
new_foldFM_LE(wz3, Char(Zero), Branch(Char(Zero), wz61, wz62, wz63, wz64), bb, bc) → new_foldFM_LE(wz3, Char(Zero), wz63, bb, bc)
new_foldFM_LE(wz3, Char(Zero), Branch(Char(Succ(wz6000)), wz61, wz62, wz63, wz64), bb, bc) → new_foldFM_LE(wz3, Char(Zero), wz63, bb, bc)
new_foldFM_LE(wz3, Char(Zero), Branch(Char(Zero), wz61, wz62, wz63, wz64), bb, bc) → new_foldFM_LE(wz3, Char(Zero), wz64, bb, bc)
new_foldFM_LE1(wz34, wz36, wz37, wz38, wz39, wz40, wz41, Succ(wz420), Succ(wz430), h, ba) → new_foldFM_LE1(wz34, wz36, wz37, wz38, wz39, wz40, wz41, wz420, wz430, h, ba)
new_foldFM_LE10(wz34, wz36, wz37, wz38, wz39, wz40, wz41, h, ba) → new_foldFM_LE(wz34, Char(Succ(wz36)), wz41, h, ba)
new_foldFM_LE1(wz34, wz36, wz37, wz38, wz39, wz40, wz41, Succ(wz420), Zero, h, ba) → new_foldFM_LE(wz34, Char(Succ(wz36)), wz40, h, ba)
new_foldFM_LE1(wz34, wz36, wz37, wz38, wz39, wz40, wz41, Zero, Succ(wz430), h, ba) → new_foldFM_LE(wz34, Char(Succ(wz36)), wz40, h, ba)
new_foldFM_LE(wz3, Char(Succ(wz500)), Branch(Char(Succ(wz6000)), wz61, wz62, wz63, wz64), bb, bc) → new_foldFM_LE1(wz3, wz500, wz6000, wz61, wz62, wz63, wz64, wz6000, wz500, bb, bc)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
QDP
                    ↳ QDPSizeChangeProof
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_foldFM_LE(wz3, Char(Zero), Branch(Char(Zero), wz61, wz62, wz63, wz64), bb, bc) → new_foldFM_LE(wz3, Char(Zero), wz64, bb, bc)
new_foldFM_LE(wz3, Char(Zero), Branch(Char(Zero), wz61, wz62, wz63, wz64), bb, bc) → new_foldFM_LE(wz3, Char(Zero), wz63, bb, bc)
new_foldFM_LE(wz3, Char(Zero), Branch(Char(Succ(wz6000)), wz61, wz62, wz63, wz64), bb, bc) → new_foldFM_LE(wz3, Char(Zero), wz63, bb, bc)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
QDP
                    ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

new_foldFM_LE10(wz34, wz36, wz37, wz38, wz39, wz40, wz41, h, ba) → new_foldFM_LE(wz34, Char(Succ(wz36)), wz40, h, ba)
new_foldFM_LE(wz3, Char(Succ(wz500)), Branch(Char(Zero), wz61, wz62, wz63, wz64), bb, bc) → new_foldFM_LE(wz3, Char(Succ(wz500)), wz64, bb, bc)
new_foldFM_LE1(wz34, wz36, wz37, wz38, wz39, wz40, wz41, Zero, Zero, h, ba) → new_foldFM_LE10(wz34, wz36, wz37, wz38, wz39, wz40, wz41, h, ba)
new_foldFM_LE(wz3, Char(Succ(wz500)), Branch(Char(Zero), wz61, wz62, wz63, wz64), bb, bc) → new_foldFM_LE(wz3, Char(Succ(wz500)), wz63, bb, bc)
new_foldFM_LE1(wz34, wz36, wz37, wz38, wz39, wz40, wz41, Zero, Succ(wz430), h, ba) → new_foldFM_LE(wz34, Char(Succ(wz36)), wz41, h, ba)
new_foldFM_LE1(wz34, wz36, wz37, wz38, wz39, wz40, wz41, Succ(wz420), Succ(wz430), h, ba) → new_foldFM_LE1(wz34, wz36, wz37, wz38, wz39, wz40, wz41, wz420, wz430, h, ba)
new_foldFM_LE10(wz34, wz36, wz37, wz38, wz39, wz40, wz41, h, ba) → new_foldFM_LE(wz34, Char(Succ(wz36)), wz41, h, ba)
new_foldFM_LE1(wz34, wz36, wz37, wz38, wz39, wz40, wz41, Zero, Succ(wz430), h, ba) → new_foldFM_LE(wz34, Char(Succ(wz36)), wz40, h, ba)
new_foldFM_LE1(wz34, wz36, wz37, wz38, wz39, wz40, wz41, Succ(wz420), Zero, h, ba) → new_foldFM_LE(wz34, Char(Succ(wz36)), wz40, h, ba)
new_foldFM_LE(wz3, Char(Succ(wz500)), Branch(Char(Succ(wz6000)), wz61, wz62, wz63, wz64), bb, bc) → new_foldFM_LE1(wz3, wz500, wz6000, wz61, wz62, wz63, wz64, wz6000, wz500, bb, bc)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: